A functional link between MT neurons and depth perception based on motion parallax.

نویسندگان

  • HyungGoo R Kim
  • Dora E Angelaki
  • Gregory C DeAngelis
چکیده

As an observer translates, objects lying at different distances from the observer have differential image motion on the retina (motion parallax). It is well established psychophysically that humans perceive depth rather precisely from motion parallax and that extraretinal signals may be used to correctly perceive the sign of depth (near vs far) when binocular and pictorial depth cues are absent or weak. However, the neural basis for this capacity remains poorly understood. We have shown previously that neurons in the macaque middle temporal (MT) area combine retinal image motion with smooth eye movement command signals to signal depth sign from motion parallax. However, those studies were performed in animals that were required simply to track a visual target, thus precluding direct comparisons between neural activity and behavior. Here, we examine the activity of MT neurons in rhesus monkeys that were trained to discriminate depth sign based on motion parallax, in the absence of binocular disparity and pictorial depth cues. We find that the most sensitive MT neurons approach behavioral sensitivity, whereas the average neuron is twofold to threefold less sensitive than the animal. We also find that MT responses are predictive of perceptual decisions (independent of the visual stimulus), consistent with a role for MT in providing sensory signals for this behavior. Our findings suggest that, in addition to its established roles in processing stereoscopic depth, area MT is well suited to contribute to perception of depth based on motion parallax.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MT Neurons Combine Visual Motion with a Smooth Eye Movement Signal to Code Depth-Sign from Motion Parallax

The capacity to perceive depth is critical for an observer to interact with his or her surroundings. During observer movement, information about depth can be extracted from the resulting patterns of image motion on the retina (motion parallax). Without extraretinal signals related to observer movement, however, depth-sign (near versus far) from motion parallax can be ambiguous. We previously de...

متن کامل

A neural model for the integration of stereopsis and motion parallax in structure from motion

We introduce a model for the computation of structure-from-motion based on the physiology of visual cortical areas MT and MST. The model assumes that the perception of depth from motion is related to the firing of a subset of MT neurons tuned to both velocity and disparity. The model's MT neurons are connected to each other laterally to form modulatory receptive-field surrounds that are gated b...

متن کامل

The motion/pursuit law for visual depth perception from motion parallax

One of vision's most important functions is specification of the layout of objects in the 3D world. While the static optical geometry of retinal disparity explains the perception of depth from binocular stereopsis, we propose a new formula to link the pertinent dynamic geometry to the computation of depth from motion parallax. Mathematically, the ratio of retinal image motion (motion) and smoot...

متن کامل

Abnormal depth perception from motion parallax in amblyopic observers

Many similarities exist between the perception of depth from binocular stereopsis and that from motion parallax. Moreover, Rogers (1984, cited in, Howard, I. P., & Rogers, B. J. (1995). Binocular vision and stereopsis. Oxford Claridon, New York.) suggests a relationship between an observer's ability to use disparity information and motion parallax information in a depth perception task. To more...

متن کامل

Eye movements provide the extra-retinal signal required for the perception of depth from motion parallax

It has been unclear whether the perception of depth from motion parallax is an entirely visual process or whether it requires extra-retinal information such as head movements, vestibular activation, or eye movements. Using a motion aftereffect and static test stimulus technique to eliminate visual cues to depth, this psychophysical study demonstrates that the visual system employs a slow eye mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 35 6  شماره 

صفحات  -

تاریخ انتشار 2015